Measuring Low X-ray Surface Brightness at High Redshift Presented by: C. Kilbourne Slides by: M. Bautz (with a few extra on the XRS background added) - Cluster photometry to the virial radius - Surface brightness sensitivity limits - Implications for mission requirements ## Constellation-X and Clusters - Clusters are more complex than we'd like: Non-gravitational physics is important (from scaling laws & their evolution) - We need to understand clusters at the epoch at which we want to use them $(z \sim 1)$ to study dark energy - Con-X must allow us (in conjunction with lensing and SZ data) to model these objects as completely as possible. ## Surface Brightness Limits - Rest-frame surface brightness $\sim L/r_v^2 \sim [M_v E^2(z)]^{2/3}$ - * From self-similarity $(E(z) = H(z)/H_0)$ - * Non-gravitational processes will reduce this - Typical Chandra limits at $z \sim 0.4$, $M \sim 3x10^{14} M_{sun}$ - * Photometry to $\sim r_{300}$ (e.g., Vikhlinin) - * Spectroscopy (kT) to $\sim r_{2500}$ (e.g. Allen) - Goals: Spectroscopy to $\sim r_{200}$ at z > 1, $M < 10^{14} M_{sun}$ - Requires surface brightness limit reduction by factor > 65! Is this possible? ## Integration Time Rises Rapidly #### (Detector Limited) # Surface Brightness Sensitivity S_{min} (c s⁻¹ cm⁻² ster⁻¹) ~ B_{det} (c s⁻¹ cm⁻²) F^2/A_{eff} | Mission | F (m) | A _{eff} (m ²) | B _{det} (1 keV)
(c s ⁻¹ cm ⁻² keV ⁻¹) | F^2/A_{eff} | S _{lim} ** (rel. to CXO) | |---------------------------|-------|------------------------------------|---|---------------|-----------------------------------| | CXO | 10 | 0.07 | 10-2 | 1 | 1 | | XMM
(Epic PN) | 7.5 | 0.15 | 2 x 10 ⁻² | 0.26 | 0.52 | | Suzaku XIS (1 sensor) | 4.75 | 0.04 | 1.2 x 10 ⁻³ | 0.39 | 0.05 | | Con-X (classic, 1 module) | 10 | 0.375 | 1.5 x 10 ⁻² (scaled from XRS) | 0.19 | 0.29 | | XEUS | 50 | 6 | 1.5 x 10 ⁻² (?) | 0.29 | 0.45?? | ** Source = Particle Background (Ignores Galactic Foreground!) #### (Detector Limited) # Surface Brightness Sensitivity $S_{min} \ (\text{c s--1 cm--2 ster--1}) \ \boldsymbol{\sim} \ B_{det} \ (\text{c s--1 cm--2}) \ F^2 / A_{eff}$ | Mission | F | A _{eff} | B _{det} (1 keV) | F^2/A_{eff} | S_{lim}^{**} (ph s ⁻¹ cm ⁻² keV ⁻¹) | |---------------------------|------|------------------|---|---------------|---| | | (m) | (m^2) | (c s ⁻¹ cm ⁻² keV ⁻¹) | (rel. to CXO) | (pirs cin kev) | | CXO | 10 | 0.07 | 10-2 | 1 | 14 | | XMM
(Epic PN) | 7.5 | 0.15 | 2 x 10 ⁻² | 0.26 | 7.4 | | Suzaku
(1 XIS) | 4.75 | 0.04 | 1.2 x 10 ⁻³ | 0.39 | 0.7 | | Con-X (classic, 1 module) | 10 | 0.375 | 1.5 x 10 ⁻² (?) | 0.19 | 3 | | XEUS | 50 | 6 | 1.5 x 10 ⁻² (?) | 0.29 | 6?? | mwb/MKI ** Source = Particle Background (Ignores Galactic Foreground!) ## Rates over Con-X FOV - 4, 32x32 arrays = 2.56 cm² - Using 0.015 c/s/keV/cm² (3x0.005), get 0.038 c/s/keV. But XRS background wasn't flat. Use 0.007 to characterize soft part of band. Increase LEO-to-L2 scaling to 5. Then get 0.09 c/s/keV. #### Constellation-X Backgrounds 2.5 x 2.5 arcmin FOV ## Summary - Constellation-X must validate physical models of z~1 clusters - This will entail spatially resolved spectroscopy to r_{vir} & surface brightness sensitivity 50x XMM's - XRS flight data provide secure basis for Constellation-X background estimates - Instrumental & cosmic backgrounds pose significant challenges; lower (still) instrumental background is highly desirable.